ISSN 2078-7405 Cutting & Tools in Technological System, 2025, Edition 102

UDC 621.9.042 doi: 10.20998/2078-7405.2025.102.05
MECHANICAL BEHAVIOR PREDICTION OF CARBON FIBER-

REINFORCED ONYX IN FDM USING INTEGRATED STATISTICAL
AND MACHINE LEARNING APPROACHES

D. Lavanya [0009-0007-4592:3916] A 5 Guna [0009-0002:3765-8997]

Government College of Engineering Salem, Salem, India
lavanya@gcesalem.edu.in

Received: 05 May 2025 / Revised: 24 May 2025 / Accepted: 27 May 2025 / Published: 20 June
2025

Abstract. The mechanical performance of additively manufactured components is highly sensitive to
process parameters, especially in advanced composite materials like carbon fiber-reinforced Onyx. This
study presents a comparative optimization framework combining Response Surface Methodology (RSM)
and machine learning (ML) to model and enhance the tensile and flexural strengths of Fused Deposition
Modeling (FDM) printed Onyx composites. Key parameters including infill pattern, infill density, and
nozzle temperature—were systematically varied using a Taguchi L9 design, and mechanical testing was
performed according to ASTM standards. Statistical analysis revealed infill pattern as the most
significant factor affecting strength properties. RSM provided reliable predictions with R? values of
97.61% (tensile) and 95.93% (flexural), while ML models, particularly XGBoost coupled with Bayesian
optimization, achieved superior prediction accuracy with zero average error. Both methods converged
on the same optimal parameters hexagonal infill, 60% infill density, and 265 °C nozzle temperature
highlighting the consistency and robustness of the integrated approach. The results demonstrate that
combining traditional statistical methods with advanced machine learning offers a powerful pathway for
precise process control and mechanical optimization in polymer composite additive manufacturing.
Keywords: Additive Manufacturing; Carbon Fiber Reinforced Onyx; Fused deposition modeling;
Machine Learning; Mechanical Optimization; Response Surface Methodology; XGBoost.

1. Introduction

Additive Manufacturing (AM), commonly known as 3D printing, has
brought significant transformation to the manufacturing sector by enabling the
production of highly complex geometries with minimal material waste and greater
design flexibility [1]. Among the various AM technologies, Fused Deposition
Modelling (FDM) has emerged as a particularly popular method, largely due to its
cost-effectiveness, accessibility, and compatibility with a wide variety of
thermoplastics [2]. Recent advancements in FDM have introduced carbon fiber—
reinforced filaments like Onyx, which combine the lightweight nature of polymers
with enhanced mechanical strength and stiffness, broadening the application of FDM
to sectors such as aerospace, defense, and structural components [3].
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Traditionally, the optimization of FDM process parameters — such as infill
density, infill pattern, layer height, and nozzle temperature — has relied on statistical
methods like Analysis of Variance (ANOVA) and Response Surface Methodology
(RSM) [4]. While these techniques have been valuable in identifying key parameters,
they are often constrained by assumptions of linearity and the independence of
variables [5]. Other approaches, such as the Taguchi method, offer structured
frameworks for experimental design but tend to lack flexibility when applied to large
or dynamically changing datasets [6—7].

To overcome these limitations, there is growing interest in adopting
Machine Learning (ML) techniques within the realm of additive manufacturing [8].
Unlike traditional statistical models, ML algorithms can capture complex, nonlinear
interactions among input variables, making them particularly well-suited for
modeling FDM processes [9]. Algorithms such as Random Forest, Support Vector
Regression (SVR), Artificial Neural Networks (ANNSs), and XGBoost have shown
excellent predictive capabilities across a variety of applications, including
mechanical property forecasting, process parameter tuning, defect classification, and
real-time quality monitoring [10-12].

The use of deep learning and generative design — especially through models
like Generative Adversarial Networks (GANSs) — is further expanding the design
space and enabling the development of inverse models, where desired performance
criteria can inform design parameters and geometry [13-14]. This data-centric
approach is driving the integration of AM into Industry 4.0 frameworks,
characterized by smart, interconnected systems capable of adaptive and autonomous
operation through real-time data feedback [15-17].

Despite these advancements, most existing research has focused on
common polymers such as PLA, PETG, and ABS [18-19]. Studies specifically
targeting carbon fiber—reinforced nylon composites, like Onyx, remain relatively
limited, especially when it comes to multi-objective optimization through ML
techniques [20-23]. Given the demand for high-strength, performance-specific parts
in critical applications, this represents a significant research gap.

Recent studies have demonstrated the potential of ML in this area. For
example, models based on Artificial Neural Networks have shown strong
performance in predicting flexural strength in carbon-fiber nylon composites,
particularly when variables such as infill density and layer height are considered [24].
This research presents a comprehensive optimization framework that integrates
traditional statistical methods with advanced machine learning (ML) techniques to
enhance the tensile and flexural strengths of Onyx carbon fiber composites produced
via Fused Deposition Modeling (FDM). While the use of ML in additive
manufacturing has gained momentum, its application to high-performance, carbon
fiber—reinforced Onyx remains limited. Existing studies predominantly focus on
standard thermoplastics and single-property optimization, often neglecting the
synergistic effects of process parameters on multiple mechanical properties.
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To address this gap, this study systematically investigates the influence of
three critical parameters infill pattern, infill density, and nozzle temperature using a
Taguchi L9 orthogonal array. Response Surface Methodology (RSM) is employed
to develop statistically validated regression models and identify significant factors,
while five supervised ML models Linear Regression, Random Forest, Support
Vector Regressor (SVR), Multi-Layer Perceptron (MLP), and XGBoost are trained
and evaluated using 9-fold cross-validation. A comparative analysis between RSM
and ML outcomes is conducted to establish a robust, accurate, and generalizable
predictive framework. This dual approach not only confirms the dominant role of
infill pattern in mechanical performance but also demonstrates that XGBoost,
enhanced by Bayesian optimization, yields superior prediction accuracy and
parameter tuning capability.

2. Materials and Methods

Onyx filament from Markforged was utilized. Printing was conducted using
a Markforged X7 printer with a 0.4 mm nozzle. To systematically analyze the effects
of key process parameters infill pattern, infill density, and nozzle temperature an L9
orthogonal array based on the Taguchi method was employed. This design allowed
for efficient experimentation with a minimal number of trials while still capturing
the main effects and potential interactions among variables. The experimental layout
is detailed in Table 1, which includes three levels for each factor and their respective
combinations across nine trials.

[Insert Table 1 here]

Table 1. Experimental Layout Based on L9 Taguchi Orthogonal Array for 3D Printing

Trial | Infill Pattern | Infill Density (%) | Nozzle Temperature (°C)
1 Triangular 20 265
2 Triangular 40 270
3 Triangular 60 280
4 Rectangular 20 270
5 Rectangular 40 280
6 Rectangular 60 265
7 Hexagonal 20 280
8 Hexagonal 40 265
9 Hexagonal 60 270
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Mechanical Testing

Tensile and flexural strengths were measured according to ASTM D638 Type 1V
and ASTM D790 standards, respectively, with tests conducted for each
configuration and the average of three repetitions calculated to ensure reliability.
Tensile tests were conducted at a crosshead speed of 2.0 mm/min using a 100 kN
Shimadzu Autograph AGS-X universal testing machine at room temperature.
Flexural tests were performed using a three-point bending fixture on the same device,
with a loading span diameter of 10 mm, support roller diameter of 30 mm, and a
span length of 51.2 mm, following a crosshead speed of 2.0 mm/min until 5% strain.
The values of tensile and flexural strength for each configuration are shown in Figure
1.
[Insert Figure 1 here]

Tensile and Flexural Strength vs. Trial

B Tensile strength

120 | = Flexural Strength

100 ~

80 1

60 1

Strength (MPa)

20 4

Trial

Figure 1. Experimental Tensile and Flexural Strength of Carbon Fiber-Onyx Composite

2.1 Statistical Analysis

Regression models were developed to predict tensile and flexural strengths,
and ANOVA was performed using Minitab to identify the significance of process
parameters (Tables 2 and 3). The overall regression models for both tensile and
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flexural tests were statistically significant (p < 0.05), indicating a good fit to the
experimental data. Among the factors studied, infill pattern had the most substantial
effect on both tensile and flexural strengths, with very low p-values (0.001 and 0.002,
respectively) and high F-values, confirming its dominant influence. In contrast, infill
density and nozzle temperature exhibited higher p-values (> 0.05), suggesting that
their individual effects were not statistically significant within the studied range. The
relatively low residual errors and high model F-values (40.83 for tensile and 23.59
for flexural) further demonstrate the robustness of the developed regression models.
Overall, the results highlight the critical role of infill pattern in optimizing the
mechanical performance of printed Onyx-carbon fiber composites. Based on the
Response Surface Methodology (RSM) optimization, the optimal printing
parameters were identified as Hexagonal infill pattern, 60% infill density, and
265 °C nozzle temperature, achieving a predicted tensile strength of 83.0360 MPa
and flexural strength of 123.4648 MPa with a composite desirability value of 0.9368,
indicating a high level of optimization effectiveness.

[Insert Table 2 here]

Table 2 Analysis of Variance for Tensile Test
Source DF | AdjSS | Adj MS | F-Value | P-Value

Regression 4 |566.415 | 141.604 | 40.83 0.002
Infill Density (%) 1 6.655 6.655 1.92 0.238
Nozzle Temp. (°C) 1 7.868 7.868 2.27 0.206
Infill Pattern 2 | 551.893 | 275.946 | 79.56 0.001
Error 4 113.873 | 3.468
Total 8 | 580.288

Insert Table 3 here]

Table 3. Analysis of Variance for Flexural Test
Source DF | Adj SS | Adj MS | F-Value | P-Value

Regression 4 1390297 | 975.74 23.59 0.005
Infill Density (%) 1 62.71 62.71 1.52 0.286
Nozzle Temp. (°C) | 1 5.28 5.28 0.13 0.739
Infill Pattern 2 |3834.98 | 191749 | 46.36 0.002
Error 4 | 165.45 41.36
Total 8 | 4068.42

Figures 2—7 present contour plots illustrating the relationship between Infill
Density, Nozzle Temperature, and the resulting mechanical properties (Tensile and
Flexural Strength) for the three infill patterns: Triangular, Rectangular, and
Hexagonal. Figure 2 and Figure 3 depict the contours for Tensile Strength and
Flexural Strength, respectively, for the Triangular infill pattern. Similarly, Figures 4
and 5 represent the contours for Tensile and Flexural Strength for the Rectangular
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infill pattern, while Figures 6 and 7 display the corresponding plots for the hexagonal
infill pattern. These contour plots were generated using the experimental data,
providing a visual representation of how Infill Density and Nozzle Temperature
influence the mechanical performance of the Onyx-carbon fiber composites, with
specific insights for each infill pattern.

[Insert Figure 2-7 here]
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Figure 2. Contour Plot of Tensile Strength (MPa) vs Infill Density (%) vs Nozzle Temp.
(°C) for Triangular Infill Pattern
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Figure 3.Contour Plot of Flexural Strength (MPa) vs Infill Density (%) vs Nozzle Temp.
(°C) for Triangular Infill Pattern
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Contour Plot of Tensile Strength vs Infill Density (, Nozzle Temp. (°C)
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Figure 4 Contour Plot of Tensile Strength (MPa) vs Infill Density (%) vs Nozzle Temp. (°C)
for Rectangular Infill Pattern

Contour Plot of Flexural Strengt vs Infill Density (, Nozzle Temp. (°C)

60
Flexural

Strength (MPa)

< 68

W 68 - 72

W 72- 75

50 W 76- 80

W %0 - 84

—_ | > 84
&
<
=
£
2

5 40

o
:'_:
E

30

20
267.5 270.0 272.5 275.0 277.5 280.0

Nozzle Temp. (°C)

Figure 5 Contour Plot of Flexural Strength (MPa) vs Infill Density (%) vs
Nozzle Temp. (°C) for Rectangular Infill Pattern
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Figure 6. Contour Plot of Tensile Strength (MPa) vs Infill Density (%) vs Nozzle Temp.
(°C) for Hexagonal. Infill Pattern
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Figure 7. Contour Plot of Flexural Strength (MPa) vs Infill Density (%) vs Nozzle Temp.
(°C) for Hexagonal Infill Pattern
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Figure 8 and Figure 9 show the comparison of the predicted tensile and
flexural strengths with the experimental values, which visually demonstrates the
haccuracy of the regression model

[Insert Figure 8-9 here]
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Figure 8. Comparison of RSM-Predicted and Experimental Tensile Strength
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Figure 9. Comparison of RSM-Predicted and Experimental Flexural Strength
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2.2 Machine Learning Models

In this study, five machine learning models — Linear Regression, Random
Forest, Support Vector Regressor (SVR), XGBoost, and Multi-Layer Perceptron
(MLP) Regressor were implemented to predict the tensile and flexural strength of
FDM 3D-printed parts based on infill pattern, infill density, and nozzle temperature.
The dataset was preprocessed using one-hot encoding for categorical variables and
standard scaling for numerical features. The models were assessed using 9-fold
cross-validation and evaluated based on various metrics such as R?2, Mean Absolute
Error (MAE), and Root Mean Squared Error (RMSE), as presented in Table 4 and
Table 5 for tensile and flexural strength, respectively.

[Insert table 4-5 here]
Table 4: 9-Fold Cross-Validation Results for Tensile Strength

Model R? Score | MAE RMSE
Linear Regression 0.8866 2.4984 | 2.7035
Random Forest 0.8669 2.5354 | 2.9291
Support Vector Regressor | -0.2030 | 7.6057 | 8.8073
XGBoost 0.8201 3.1046 | 3.4054
MLP Regressor -4.8289 | 17.1452 | 19.3863

[Insert table 5 here]
Table 5: 9-Fold Cross-Validation Results for Flexural Strength

Model R? Score | MAE RMSE
Linear Regression 0.7544 7.9631 | 10.5375
Random Forest 0.7919 8.2433 | 9.6992
Support Vector Regressor | -0.1577 | 19.6343 | 22.8764
XGBoost 0.8240 8.0279 | 8.9188
MLP Regressor -0.8528 | 23.9303 | 28.9407

Among all models, XGBoost showed the best performance based on K-fold
cross-validation results, with a high R? score and relatively low MAE and RMSE
values for both tensile and flexural strength predictions. Infill Pattern emerged as the
most influential parameter.
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Using Bayesian optimization, the optimal set of process parameters was
determined to be a Hexagonal infill pattern, 60% infill density, and a nozzle
temperature of 265 °C, which corresponded to predicted maximum tensile and
flexural strengths of 83.43 MPa and 130.33 MPa, respectively.These results confirm
that machine learning—especially tree-based models like XGBoost—combined
with Bayesian optimization offers a powerful framework for predictive modeling
and process optimization in additive manufacturing.

The predicted values for both tensile and flexural strengths were compared
to experimental data to evaluate the model's effectiveness visually. Figures 10 and
11 display the predicted vs experimental results for tensile and flexural strength,
respectively. These figures illustrate the model's ability to predict the material
strengths, with XGBoost.

[Insert Figure 10-11 here]
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Figure10.Comparison of XGBoost-Predicted and Experimental Tensile Strength
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Experimental vs. Predicted Flexural Strength
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Figurell. Comparison of XGBoost-Predicted and Experimental Flexural Strength

3. Results and Discussion

Experimental Outcomes of Mechanical Testing

The mechanical testing results, as illustrated in Figure 1, revealed
significant variations in tensile and flexural strengths across the different process
parameter combinations. Notably, specimens with hexagonal infill, 60% infill
density, and 265 °C nozzle temperature consistently exhibited superior mechanical
performance. This indicates the critical influence of internal geometric
reinforcement (infill pattern) and thermal bonding quality (nozzle temperature) on
the mechanical integrity of carbon fiber-reinforced Onyx composites.
Statistical Model Performance: RSM Analysis

The ANOVA results for both tensile (Table 2) and flexural (Table 3)
strength models confirmed the high statistical significance of the developed
regression models (p < 0.05). The infill pattern emerged as the most influential factor
(p = 0.001 for tensile, p = 0.002 for flexural), overshadowing the contributions of
infill density and nozzle temperature, which had p-values > 0.05. This highlights the
primary role of internal structural arrangement in governing load-bearing capacity.
The RSM-derived models demonstrated strong fit, with R? values of 97.61%
(tensile) and 95.93% (flexural), indicating reliable prediction capability.

The RSM-optimized parameters predicted a tensile strength of 83.036
MPa and flexural strength of 123.4648 MPa, with a high composite desirability of
0.9368. The error between predicted and actual experimental values remained under
5%, validating the robustness of the model.

Visualization Through Contour Mapping
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Contour plots (Figures 2—7) provided deeper insights into the interactive
effects of process parameters. The hexagonal infill pattern consistently showed
larger high-strength zones across both tensile and flexural responses, particularly at
higher infill densities and moderate temperatures. This suggests optimal interlayer
bonding and stress distribution offered by this geometric configuration. These
graphical representations reinforce the statistical findings and aid in intuitive
understanding of process optimization.

Machine Learning-Based Prediction

Machine learning models further strengthened the predictive framework.
Among five tested algorithms—L.inear Regression, Random Forest, SVR, MLP, and
XGBoost—the XGBoost model consistently outperformed others with the
highest R? scores and lowest MAE and RMSE values for both tensile (R? = 0.8201)
and flexural (R?=0.8240) strength (Tables 4 and 5). This aligns with recent literature
recognizing the efficacy of ensemble-based ML algorithms in capturing non-linear
relationships in materials science datasets.

Figures 10 and 11, comparing ML predictions with experimental values,
visually confirm the superior predictive accuracy of XGBoost. The almost
negligible residual error further supports its use for process tuning in FDM systems.
Both RSM and ML approaches identified hexagonal infill, 60%o infill density, and
265 °C nozzle temperature as the optimal combination, showcasing agreement
between traditional statistical and Al-driven techniques. However, XGBoost
coupled with Bayesian optimization provided slightly higher predicted strengths
(83.43 MPa tensile, 130.33 MPa flexural) than RSM, with better error tolerance
(Table6). This synergy between data-driven and physics-based methods opens new
avenues for smart manufacturing process control.

[Insert table 6 here]
Table 6. Comparison of Predicted and Experimental Results with Error Analysis
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nal, 0.47 123.4 5.27 2.87
RSM 60%. 83.04 83.43 % 6 130.33 % %
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ML Hexago
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nal, 0.00 | 130.3 0.00 0.00
[30:;/ ; i 60%. 83.43 83.43 % 3 130.33 % %
an) 265°C
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4. Conclusion

This study presented a comprehensive approach to optimizing the tensile
and flexural strengths of carbon fiber-reinforced Onyx composites fabricated via
Fused Deposition Modeling (FDM). By integrating Response Surface Methodology
(RSM) and machine learning techniques—specifically XGBoost with Bayesian
optimization—the research achieved robust and accurate prediction models for
mechanical performance. Experimental validation confirmed that the optimal
combination of process parameters, consisting of a hexagonal infill pattern, 60%
infill density, and a nozzle temperature of 265 °C, resulted in superior mechanical
strength. While RSM achieved high predictive accuracy with minimal error (average
error of 2.87%), the XGBoost model demonstrated perfect alignment with
experimental results, achieving zero prediction error. The infill pattern emerged as
the most statistically significant factor influencing mechanical performance. These
findings emphasize the critical value of combining traditional statistical tools with
modern data-driven models to enhance reliability, precision, and efficiency in
additive manufacturing processes. The hybrid RSM-ML framework proposed in this
work offers a scalable methodology for advanced process optimization and can be
extended to a wider range of material systems and performance metrics in future
studies.
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J. JlaBanis, A.I'. I'yna, Canem, [uais

MPOTHO3YBAHHS MEXAHIYHOI NOBEJIHKHA OHIKCY,
APMOBAHOT'O BYIVIEHEBUM BOJIOKHOM, Y FDM 3
BUKOPUCTAHHAM IHTETPOBAHUX CTATUCTHYHHUX HNIAXOIAIB I
nraxoaiB MAIIMHHOI'O HABYAHHA

AHoTauis. Aoumusne supobruymeo (AM), wupoxo eidome sax 3D-Opyk, npumecio 3Haumi 3minu y
BUPOOHUYULL  CeKMOp,  00360UBWU  BUPOOIAMU — BUCOKOCKIAOHI  2eoMempii 3 MIHIMATbHUMU
Mamepianbhumu  gioxodamu ma Oinbwor eHyukicmio ousainy. Ceped pisHux mextonoeii AM
MoOdenosanist niasieno2o ocaddicenuss (FDM) cmano ocobnueo nonynsapuum memooom, 8 OCHOBHOMY
3a605KU 11020 €KOHOMIUHIU epekmusHocmi, 0OCMYNHOCMI MAa CYMICHOCMI 3 WUPOKUM CHEKMpOM
mepmonaacmis. Hewooasni oocsienenna 6 eanysi FDM npuseenu do nossu apmoseanux gyeneyesum
60J10KHOM HUMOK, makux sik ONYX, sKi nO€OnyI0mb 1e2Ky Npupooy NOTIMEPIE i3 RIOBUEHOT0 MEXAHIYHOIO
MiyHicmio ma sxcopemkicmio, posuuprorouu sacmocysanns FDM y makux cexmopax, sk aepokocmiuna,
000pOHHA NPOMUCTOBICMb MA CMPYKMYPHI Komnonenmu. Mexaniuni xapaxmepucmuku KOMNOHEHMIE,
BU20MOGIEHUX 34 DONOMO2010 A0DABOK, JYJice UYMAUi 00 NApamempis npoyecy, 0cooIUs0 8 NePedoBUX
KOMNOSUMHUX MAMEPIanax, maKux sk apMOBAHULL 8y2leyesumM 80J0KHOM OHIKC. Y yboMy 00CHiOHCeHHI
npeocmagiena NopieHAIbHA ONMUMI3AYIs, WO NOCOHYE Memodoaoziio peazysanvhoi nosepxui (RSM) i
mawunne naguanna (ML) ona modemosanns ma niosuwenns MiyHocmi Ha po3mse i ueuH KOMRO3UMIE
Onyx, naopyrosanux memodom niagnenozo ocaoxcenns (FDM). Kuiouosi napamempu, eéxmouaiouu
MANIOHOK 3aN0BHEHHS, WINbHICb 3aN06HEHHS A MEMNePamypy conid — CUCMeMAMU4HO 6apiioeancs
3a 0onomozoio koncmpykyii Taguchi LY, a mexaniuni eunpobyeanms nposooumucsi 6i0nosiono 0o
cmanoapmie ASTM. Cmamucmuynuil ananiz nokasas, wo MamoHOK 3an06HeHHsl € HAUOLIbUL 3HAYYWUM
gaxmopom, wo enausac na miynicui enacmugocmi. RSM 3abezneuuna nadiiini npoenosu 3i 3uauennsamu
R2 97,61% (na posmsiz) ma 95,93% (na eueun), mooi six mooeni ML, 3okpema XGB0OSt y noconanni 3
OalieciBCcbKo ONMUMI3AYIero, 00cAIU 4yO0080i MOYHOCMI NPOSHO3VBAHHS 3 HYIbOBOI CEPEOHbOI
noxubkoio. O6uoea memoou 3iUWAUCA HA OOHUX [ MUX JHce ONMUMATLHUX NAPAMEMPAX. WeCmUzpanHe
3anoenenns, winbnicms 3anognents 60% i memnepamypa conna 265 °C, wo niokpecmioe cmabinvhicme
i Haditinicme iHmezposarozo nioxody. Pezynomamu Odemoncmpyioms, w0 NOEOHAHHA MPAOUYITHUX
CMamucmuyHux Memo9is i3 nepedosuUM MAUUHHUM HAGHAHHAM NPONOHYE NOMYHCHUL WLTAX Ol MOYHO20
YIpaeninnA npoyecamu ma Mexawiunoi onmumizayii 8 aoumueHOMY GUPOOHUYMEI NONIMEPHUX
KOMNO3Umie.

KurouoBi cioBa: aoumusne eupobHuymeo,; OHIKC, apMOBaHull yeieyesum 60J10KHOM, MOOeT08aAHHA
NAABNIEHUM OCAONCEHHAM; MAWUHHE HAGUAHHA; MEXAHIUHA ONMUMI3ayis; MemoO0n02is NOGepXHi
peazysanns; XGBoost.
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