SOFTWARE AND MATHEMATICAL COMPLEX FOR MULTICRITERIAL OPTIMIZATION OF TURNING PARAMETERS ON HEAVY MACHINES
DOI:
https://doi.org/10.20998/2078-7405.2020.92.07Keywords:
heavy lathes, technological process, technological system, tool, cutting mode, multicriteria optimization, software-mathematical complex, algorithm, target function, artificial intelligence, neural network.Abstract
The issues of creation of a software-mathematical complex (SMC) for multicriteria optimization are considered in the work. One of the most promising ways to increase the efficiency of machining processes is the use of cutting tools with wear-resistant coatings, which are increasingly applied for semi-finishing and rough turning of heavy machinery parts. Objective: to increase the efficiency of machining processes on heavy lathes due to multi-criteria optimization of the parameters of the rough turning process and the parameters of the technological system. Object of study: the machining processes on heavy lathes for parts such as bodies of revolution weighing up to 20 tons. Subject of study: the relationship between the efficiency of rough turning operations on heavy lathes and the geometric and design parameters of the cutting tool. To increase the efficiency of turning on heavy lathes, a software and mathematical complex for multicriteria optimization of the technological process parameters and technological system of heavy lathes has been developed. SMC allows to adjust the values of the target optimization functions, as well as the parameters of generated neural networks and the genetic algorithm. To perform the task of multicriteria optimization of the parameters of the technological process of machining in SMC there is a possibility of setting the parameters of the tool (cutting plates), followed by formation and accumulation of the tool base and setting the parameters of the workpiece: specification of the material and of the cutting effort. Also for various parameters of technological transition a possibility to form the table of normative parameters is provided, by which training of a neural network will be made.References
Mironenko, E. V. Obschaya struktura matematicheskoy modeli dlya opredeleniya energoeffektivnyih tehnologicheskih parametrov tokarnoy obrabotki detaley tyazhelogo mashinostroeniya / E. V. Mironenko, G. P. Klimenko, V. V. Kalinichenko // Rezanie i instrument v tehnologicheskih sistemah :Mezhdunar. nauch.-tehn. sb. – Kharkiv : NTU «KhPI», 2015. – Vyip. 85. – pp. 202–210.
Mironenko, E. V. Nauchnyie osnovyi sozdaniya sistem agregatno-modulnyih instrumentov dlya tyazhelyih tokarnyih stankov :dis. … d-ra tehn. nauk : 05.03.01. / E. V. Mironenko ; Donbasskaya gos. mashinostroitelnaya akademiya. – Kramatorsk, 2003. – 417 p.
Vereschaka, A. A. Rezhuschie instrumentyi s modifitsiruyuschimi iznosostoykimi kompleksami / A. A. Vereschaka, A. S. Vereschaka, M. I. Sedyih. – M. : MGTU «Stankin», 2014. – 195 p. – ISBN 978-5-702S-0712-6.
Vereschaka, A. A. Funktsionalnyie pokryitiya dlya rezhuschih instrumentov / A. A. Vereschaka // Vestnik Bryanskogo gosudarstvennogo tehnicheskogo universiteta. – 2015. – # 4 (48). – pp. 25–39.
Vereschaka, A. S. Metodologicheskie printsipyi sozdaniya funktsionalnyih pokryitiy dlya rezhuschego instrumenta / A. S. Vereschaka, S. N. Grigorev, V. P. Tabakov // Uprochnyayuschie tehnologii i pokryitiya. – 2013. – # 3. – pp. 18–39.
Tabakov, V. P. Formirovanie iznosostoykih ionno-plazmennyih pokryitiy rezhuschego instrumenta / V. P. Tabakov. – Moscow : Mashinostroenie, 2008. – 311 p.
Matsevityiy, V. M. Pokryitiya dlya rezhuschih instrumentov / V. M. Matsevityiy. – H. :Vischashk. Izd-vo pri Khark. un-te, 1987. – 128 p.
Kostyuk, G. I. Effektivnyiy rezhuschiy instrument s pokryitiem i uprochnennyim sloem : spravochnik / G. I. Kostyuk. – Kyiv. : Antikva, 2003. – 412 p. – ISBN 966-8105-21-4.
Solovjev, V. V. Primenenie plastin s pokryitiyami pri chernovom tochenii na tyazhelyih tokarnyih stankah / V. V. Solovev, E. V. Mironenko, V. S. Guzenko // Vestnik Rossiyskogo universiteta druzhbyi narodov. Seriya: Inzhenernyie issledovaniya. – # 3. – 2010. –
pp. 54–59.
Shallouey, Alan. Shablonyi proektirovaniya. Novyiy podhod k ob'ektno-orientirovannomu analizu i proektirovaniyu: Per. s angl. / Alan Shallouey, Dzheyms R. Trott – M.: Izdatelskiy dom «Vilyams», 2002. – 288 p.
Saymon Haykin. Neyronnyie seti: polnyiy kurs, 2-e izdanie. – Per. s angl. – M.: Izdatelskiy dom «Vilyams», 2006. – 1104 p.
Downloads
Published
Issue
Section
License
Copyright Notice
Authors who publish with this Collection agree to the following terms:
1. Authors retain copyright and grant the Collection right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this Collection.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Collection's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this Collection.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.