, lifetime-increasing surface hardening technologies, burnishing process, surface roughness, polycrystalline diamond, finite element (FEM) model.


This paper investigates the finite element analysis of cold forming diamond burnishing process on aluminium alloy, where the input parameters are force, feed rate and speed, as an output parameter the changing of surface roughness is analysed. This lifetime increasing process effectively reduces roughness, improves shape correctness, and increases the hardness of the sub-surface area. Machining simulation of the turned surface before burnishing is based on the real model, corresponding to the measured values, by using DEFORM-2D software in order to validate the improvement of surface quality with numerical values too.

Author Biographies

Viktoria Ferencsik, University of Miskolc

Teaching assistant, University of Miskolc, Department of Production Engineering, Miskolc - Egyetemváros, Hungary

Viktor Gál, University of Miskolc

PhD student, research assistant, Institute of Materials Structure and Materials Technology, Department of Mechanical Technology, University of Miskolc, Miskolc - Egyetemváros, Hungary


L. Balint, L. Gribovszki: A gépgyártástechnológia alapjai, Miskolci Eyetem, (1975) 418-442.

G. Bagyinszki, E. Bitay: Felületkezelés, Erdélyi Múzeum-Egyesület, Műszaki tudományos füzetek 5. (2009) 9-85.

A.A., El-Nasr: Thermomechanical fatigue behavior of burnished 7075-T6 aluminium alloy, Proceedings of the 15th Int. AMME Conference (2012) 40-50.

Z.D., Kadhim, M.A., Abdulrazzaq, W.S., Hussain: Mechanical properties of burnished steel AISI 1008, Al-Khwarizmi Engineering Journal, 14: 4 (2018) 133-142.

L., Gribovszki: Gépipari megmunkálások, Miskolc, Egyetemi Tankönyvkiadó (1977) 421.

A., Abodena: Optimization of surface roughness of brass by burnishing, The International Journal of Engineering and Information Technology, 5: 2 (2019) 90-96.

A., Bougharriou, K., Sai, W., Bouzid: Finite element modeling of burnishing process, Materials Technology: Advanced Performance, Materials 25:, (2010) 56-67.

A., Rodriguez, L. N., Lopez De Lacalle, A., Celaya, A., Lamikiz, J., Albizuru: Surface improvement of shafts by the deep ball-burnishing technique, Surface and Coatings Technology, 206:1, (2012) 2817-2824.

Y.C., Yen, P., Sartkulvanich, T., Altan: Finite element modeling of roller burnishing process, CIRP Annals-Manufacturing Technology, 54:1, (2005) 237-240.

F., Klocke, V., Backer, H., Wegner, M., Zimmermann: Finite element analysis of the roller burnishing process for fatigue resistance increase of engine components, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 225:1, (2011) 2-11.

M., Sayahi, S., Sghaier, H., Belhadjsalah: Finite element analysis of ball burnishing process: comparisons between numerical results and experiments, The International Journal of Advanced Manufacturing Technology 67:5-8, (2013) 1665-1673.

J., Kundrák, C., Felhő: 3D Roughness Parameters of Surfaces Face Milled by is Special Tools, MANUFACTURING TECHNOLOGY, 16:3 (2016) 532-538.

C., Felho, A., Nagy, J., Kundrak: Effect of Shape of Cutting Edge on Face Milled Surface Topography, LECTURE NOTES IN MECHANICAL ENGINEERING, 46:10, (2020) 525-534.

J., Kundrak, C., Felho: Comparison of theoretical and real surface roughness in face milling with octagonal and circular inserts, KEY ENGINEERING MATERIALS 581, (2014) 360-365.

M., Posdzich, R., Stöckmann, F., Morczinek, M.,Putz: Investigation of a plain ball burnishing process on differently machined Aluminium EN AW 2007 surfaces, MATEC Web of Conferences 190:11005 (2018) 1-7.

DEFORM v12sp2 System Documentation July 2, 2020; Scientific Forming Technologies Corporation.





Mechanical processing of materials, the theory of cutting materials, mathematical and computer simulation of machining p