ALUMINUM MATRIX COMPOSITES ALTERNATIVE FOR BRAKE ROTOR APPLICATIONS

Authors

DOI:

https://doi.org/10.20998/2078-7405.2024.100.08

Keywords:

Brake Rotors, Aluminum Matrix Composites (AMCs), Tribology, Brake pads

Abstract

This literature overview examines the capacity of using aluminum matrix composites (AMCs) rather than conventional grey solid iron in brake rotor packages. Driven by the preference for lighter and more environmentally friendly vehicles, AMCs offer several benefits, including decreased weight, advanced thermal properties, superior put-on resistance, and an optimized breaking system. Studies have concluded that AMCs can gain weight reductions of up to 60% compared to cast iron, resulting in stepped-forward gas performance and automobile management. Besides exhibiting superior thermal conductivity and lower thermal enlargement, it results in better heat dissipation and a reduced danger of warping and cracking. The advantage of using ceramic reinforcements, which include SiC, Al2O3, and B4C, is that they can enhance the damage resistance of AMCs, leading to a longer service life for brake rotors. The review covers various elements of AMC brake rotor development, Starting with manufacturing strategies (stir casting, ultrasonic-assisted stir casting, and squeeze casting), which are powerful techniques for producing extremely good AMC rotors, then the thermal traits, which are so essential due to their thermal conductivity, thermal expansion, and heat dissipation in brake rotor overall performance, Finally, the tribological residences affect load, sliding pace, and floor roughness on the wear and friction of AMC rotors. Brake pad compatibility is so vital in breaking systems, that deciding on suitable brake pad materials, containing non-asbestos organic (NAO) pads, can optimize performance with AMC rotors. These traits can be computationally analysed by using finite element evaluation and different numerical methods to predict the thermal and mechanical behaviour of AMC brake rotors. The review emphasizes that AMCs maintain great promise as next-era manufacturing for brake rotors, offering a balance of weight reduction, stepped-forward thermal control, and more advantageous wear resistance. Further research and improvement are necessary to optimize fabric composition, production strategies, and brake pad compatibility to improve the capacity of AMCs in brake structures.

Author Biographies

Khattab Afraa, University of Miskolc, Hungary

PhD student, Institute of Industrial Economics, University of Miskolc. Miskolc, Hungary

Felhő Csaba , University of Miskolc, Hungary

PhD, University of Miskolc, Hungary, Faculty of Mechanical Engineering and Informatics, Institute of Manufacturing Science, Director of the Institute. Born in 1977. He graduated from the Faculty of Mechanical Engineering, University of Miskolc, Faculty of Computer Engineering in 2001. Since 2002 he has been a departmental engineer at the Department of Mechanical Engineering, and later a teacher of engineering. Since 2005 assistant professor. In 2014, he defended his Dr.-Ing. thesis "Investigation of surface roughness in machining by single and multi point tools" with magna cum laude at the Otto-von-Guericke University in Magdeburg, which was honoured with a PhD degree at the Sályi István Doctoral School of Mechanical Engineering in 2015. His fields of expertise are surface roughness analysis on machined surfaces, CAD/CAM systems.

References

G. Riva, G. Valota, G. Perricone, J. Wahlström. “An FEA approach to simulate disc brake wear and airborne particle emissions,” Tribol. Int. 2019. vol. 138, pp. 90–98. doi: 10.1016/j.triboint.2019.05.035.

D. Viderščak et al. “Influence of Brake Pad Properties to Braking Characteristics,” Promet – TrafficTransportation. 2022. vol. 34. no. 1. pp. 91–102. doi: 10.7307/ptt.v34i1.3846.

W. Li., X. Yang., S. Wang., J. Xiao., Q. Hou. “Comprehensive Analysis on the Performance and Material of Automobile Brake Discs,” Metals. 2020. vol. 10. no. 3. p. 377. doi: 10.3390/met10030377.

M. K. Wasekar., M. P. Khond. “A Composite Material an alternative for manufacturing of Automotive Disc Brake: A Review,” IOP Conf. Ser. Mater. Sci. Eng. 2021. vol. 1126. no. 1. p. 012067. doi: 10.1088/1757-899X/1126/1/012067.

M. M. A. Baig., A. M. Al-Qutub., I. M. Allam., F. Patel., A. S. Mohammed. “Tribological Performance of Sub-Micron Al2O3-Reinforced Aluminum Composite Brake Rotor Material,” Arab. J. Sci. Eng. 2021. vol. 46. no. 3. pp. 2691–2700. doi: 10.1007/s13369-020-05179-x.

J. Wahlström., V. Matejka., Y. Lyu., A. Söderberg. “Contact Pressure and Sliding Velocity Maps of the Friction, Wear and Emission from a Low-Metallic/Cast-Iron Disc Brake Contact Pair,” Tribol. Ind. 2017. vol. 39. no. 4. pp. 460–470. doi: 10.24874/ti.2017.39.04.05.

K. K. Alaneme., T. M. Adewale., P. A. Olubambi. “Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide,” J. Mater. Res. Technol. 2014. vol. 3. no. 1. pp. 9–16. doi: 10.1016/j.jmrt.2013.10.008.

R. Manikandan, T. V. Arjunan, A. R. Nath O. P. “Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite,” Compos. Part B Eng. 2020. vol. 183. p. 107668. doi: 10.1016/j.compositesb.2019.107668.

Y. K. Singla., R. Chhibber., H. Bansal., A. Kalra. “Wear Behavior of Aluminum Alloy 6061-Based Composites Reinforced with SiC, Al2O3, and Red Mud: A Comparative Study,” JOM, 2015. vol. 67, no. 9. pp. 2160–2169. doi: 10.1007/s11837-015-1365-0.

A. Rehman., S. Das., G. Dixit. “Analysis of stir die cast Al–SiC composite brake drums based on coefficient of friction,” Tribol. Int. 2-12. vol. 51. pp. 36–41. doi: 10.1016/j.triboint.2012.02.007.

R. M., D. S. “Synthesis of Al-TiO2 Composites through Liquid Powder Metallurgy Route,” Int. J. Mech. Eng. 2014, vol. 1. no. 1. pp. 12–15. doi: 10.14445/23488360/IJME-V1I1P103.

P. S. Reddy., R. Kesavan., B. Vijaya Ramnath. “Investigation of Mechanical Properties of Aluminium 6061-Silicon Carbide, Boron Carbide Metal Matrix Composite,” Silicon, 2018. vol. 10. no. 2. pp. 495–502. doi: 10.1007/s12633-016-9479-8.

R. Chebolu., R. Nallu., and R. Chanamala. “Experimental investigation on mechanical behavior of as cast Zn-Al-Cu/SiC/TiB 2 hybrid metal matrix composite by ultrasonic assisted stir casting technique,” Eng. Res. Express. 2022. vol. 4. no. 2. p. 025040. doi: 10.1088/2631-8695/ac71f7.

R. Harichandran., N. Selvakumar. “Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process,” Arch. Civ. Mech. Eng. 2016. vol. 16. no. 1. pp. 147–158. doi: 10.1016/j.acme.2015.07.001.

S. Soltani, R. Azari Khosroshahi, R. Taherzadeh Mousavian, Z.-Y. Jiang, A. Fadavi Boostani, and D. Brabazon, “Stir casting process for manufacture of Al–SiC composites,” Rare Met. 2017. vol. 36. no. 7. pp. 581–590. doi: 10.1007/s12598-015-0565-7.

V. Mohanavel., M. Ravichandran. “Optimization of Parameters to Improve the Properties of AA7178/Si3N4 Composites Employing Taguchi Approach,” Silicon. 2022. vol. 14. no. 4. pp. 1381–1394. doi: 10.1007/s12633-020-00917-0.

M. I. Ul Haq., A. Anand. “Dry Sliding Friction and Wear Behavior of AA7075-Si3N4 Composite,” Silicon. 2018. vol. 10. no. 5. pp. 1819–1829. doi: 10.1007/s12633-017-9675-1.

R. Arunachalam et al. “Optimization of stir–squeeze casting parameters for production of metal matrix composites using a hybrid analytical hierarchy process–Taguchi-Grey approach,” Eng. Optim. 2019. pp. 1–18. doi: 10.1080/0305215X.2019.1639693.

C. U. Atuanya., V. S. Aigbodion. “Evaluation of Al–Cu–Mg alloy/bean pod ash nanoparticles synthesis by double layer feeding–stir casting method,” J. Alloys Compd. 2014 vol. 601. pp. 251–259. doi: 10.1016/j.jallcom.2014.02.086.

P. Madhukar., N. Selvaraj., C. S. P. Rao., G. B. Veeresh Kumar. “Enhanced performance of AA7150-SiC nanocomposites synthesized by novel fabrication process,” Ceram. Int. 2020. vol. 46, no. 10. pp. 17103–17111. doi: 10.1016/j.ceramint.2020.04.007.

S. Mahanta., M. Chandrasekaran., S. Samanta., C. Sasikumar. “Fabrication of Al7075-B4C-fly ash hybrid nanocomposites by ultrasonic assisted stir casting and tensile analysis,” presented at the INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND MACHINING 2019, Tamilnadu, India, 2019, p. 020026. doi: 10.1063/1.5117938.

T. B. Rao. “Microstructural, mechanical, and wear properties characterization and strengthening mechanisms of Al7075/SiCnp composites processed through ultrasonic cavitation assisted stir-casting,” Mater. Sci. Eng. A. 2021. vol. 805. p. 140553. doi: 10.1016/j.msea.2020.140553.

A. Ramanathan., P. K. Krishnan., R. Muraliraja. “A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities,” J. Manuf. Process. 2019. vol. 42, pp. 213–245. doi: 10.1016/j.jmapro.2019.04.017.

P. K. Dinesh Kumar., S. Darius Gnanaraj. “Aluminium-Silicon based Metal Matrix Composites for brake rotor applications: a review,” Eng. Res. Express. 2023. vol. 5. no. 2. p. 022002. doi: 10.1088/2631-8695/accdb6.

M. Kumar., M. M. A., V. Baskaran., K. H. Ramji. “Effect of sliding distance on dry sliding tribological behaviour of Aluminium Hybrid Metal Matrix Composite (AlHMMC): An alternate for automobile brake rotor – A Grey Relational approach,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2016. vol. 230. no. 4. pp. 402–415. doi: 10.1177/1350650115602724.

E. Sangeethkumar., M. Jaikumar., K. M. N. Sridath., V. Ramanathan., R. Sathyamurthy. “Tribological study on hybrid metal matrix composites for application in automotive sector,” Mater. Res. Express. 2019. vol. 6. no. 5. p. 055703. doi: 10.1088/2053-1591/ab0579.

R. Madan., S. Bhowmick. “Fabrication and microstructural characterization of Al-SiC based functionally graded disk,” Aircr. Eng. Aerosp. Technol. 2023. vol. 95. no. 2. pp. 292–301. doi: 10.1108/AEAT-03-2022-0096.

Y. Lyu., J. Wahlström., M. Tu., U. Olofsson. “A Friction, Wear and Emission Tribometer Study of Non-Asbestos Organic Pins Sliding Against AlSiC MMC Discs,” Tribol. Ind. 2018. vol. 40. no. 2. pp. 274–282, Jun. 2018, doi: 10.24874/ti.2018.40.02.11.

P. B. Pawar., R. M. Wabale., A. A. Utpat. “A Comprehensive Study of Aluminum Based Metal Matrix Composites: Challenges and Opportunities,” Mater. Today Proc. 2018. vol. 5. no. 11. pp. 23937–23944, 2018. doi: 10.1016/j.matpr.2018.10.186.

M. Rettig et al. “Carbidic Brake Rotor Surface Coating Applied by High-performance-laser Cladding,” in EuroBrake 2020 Technical Programme, FISITA. 2020. doi: 10.46720/eb2020-mds-025.

V. S. Mann., O. P. Pandey. “Effect of Dual Particle Size Corundum Particles on the Tribological Properties of LM30 Aluminium Alloy Composites for Brake Rotor Applications,” Arab. J. Sci. Eng. 2021. vol. 46. no. 12, pp. 12445–12463. doi: 10.1007/s13369-021-05939-3.

M. Singh et al. “Design and Analysis of an Automobile Disc Brake Rotor by Using Hybrid Aluminium Metal Matrix Composite for High Reliability,” J. Compos. Sci. 2023. vol. 7. no. 6. p. 244. doi: 10.3390/jcs7060244.

M. Ferraris et al. “SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes,” Ceram. Int. 2022. vol. 48. no. 8. pp. 10941–10951. doi: 10.1016/j.ceramint.2021.12.313.

S. Awe. “Sustainable aluminium brake discs and pads for electrified vehicles,” in Proceedings of the FISITA - Technology and Mobility Conference Europe 2023, Barcelona, Spain: FISITA. 2023. doi: 10.46720/eb2023-tst-020.

N. Kumar., G. Gautam., R. K. Gautam., A. Mohan., S. Mohan. “Wear, friction and profilometer studies of insitu AA5052/ZrB2 composites,” Tribol. Int. 2023. vol. 97. pp. 313–326. doi: 10.1016/j.triboint.2016.01.036.

J. Qu., P. J. Blau., B. C. Jolly. “Oxygen-diffused titanium as a candidate brake rotor material,” Wear. 2019. vol. 267. no. 5–8. pp. 818–822. doi: 10.1016/j.wear.2008.12.044.

P. J. Blau., B. C. Jolly., J. Qu., W. H. Peter., C. A. Blue. “Tribological investigation of titanium-based materials for brakes,” Wear. 2007. vol. 263. no. 7–12. pp. 1202–1211. doi: 10.1016/j.wear.2006.12.015.

M. Kindrachuk et al. “Wear-friction properties of friction pairs in disc-pad brakes,” East.-Eur. J. Enterp. Technol. 2023. vol. 4. no. 12 (124). pp. 56–61. doi: 10.15587/1729-4061.2023.285699.

P. K. Yadav., G. Dixit., B. Kuriachen., M. K. Verma., S. K. Patel., R. K. Singh. “Effect of Reinforcements and Abrasive Size on High-Stress Tribological Behaviour of Aluminium Piston Matrix Composites,” J. Bio- Tribo-Corros. 2020. vol. 6. no. 1. p. 23. doi: 10.1007/s40735-019-0317-6.

A. Baradeswaran., A. Elaya Perumal. “Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites,” Compos. Part B Eng. 2013. vol. 54. pp. 146–152. doi: 10.1016/j.compositesb.2013.05.012.

U. V. Saindane., S. Soni., J. V. Menghani. “Recent research status on modern friction materials-an Overview,” IOP Conf. Ser. Mater. Sci. Eng. 2020. vol. 810. no. 1. p. 012067. doi: 10.1088/1757-899X/810/1/012067.

K. L. Zheng., X. S. Wei., B. Yan., P. F. Yan. “Ceramic waste SiC particle-reinforced Al matrix composite brake materials with a high friction coefficient,” Wear. 2020. vol. 458–459. p. 203424. doi: 10.1016/j.wear.2020.203424.

B. Subramaniam., B. Natarajan., B. Kaliyaperumal., S. J. S. Chelladurai. “Investigation on mechanical properties of aluminium 7075 - boron carbide - coconut shell fly ash reinforced hybrid metal matrix composites,” China Foundry. 2018. vol. 15. no. 6. pp. 449–456. doi: 10.1007/s41230-018-8105-3.

S. P., H. K. Natarajan., P. K. J. “Study of silicon carbide-reinforced aluminum matrix composite brake rotor for motorcycle application,” Int. J. Adv. Manuf. Technol. 2018. vol. 94. no. 1–4. pp. 1461–1475. doi: 10.1007/s00170-017-0969-7.

G. Venkatachalam., A. Kumaravel. “Mechanical Behaviour of Aluminium Alloy Reinforced with Sic/Fly Ash/Basalt Composite for Brake Rotor,” Polym. Polym. Compos. 2017. vol. 25. no. 3. pp. 203–208. doi: 10.1177/096739111702500304.

L. Bracamonte., J. Withers., T. Smith. “Lightweight, Wear Resistant, High Thermal Conductivity Metal Matrix Composite Brake Rotors,” presented at the Brake Colloquium & Exhibition - 36th Annual. Oct. 2018. pp. 2018-01–1879. doi: 10.4271/2018-01-1879.

M. Afiefudin., R. D. Widodo., R. Rusiyanto. “Fabrication and Characterization of Asbestos Free Brake Pads Composite using Elaeocarpus Ganitrus as Reinforcement,” Automot. Exp. 2023. vol. 6. no. 2. pp. 359–371. doi: 10.31603/ae.9367.

Z. Zhang., D. L. Chen. “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites,” Mater. Sci. Eng. A. 2008. vol. 483–484. pp. 148–152. doi: 10.1016/j.msea.2006.10.184.

M. M. Jalilvand., Y. Mazaheri. “Effect of mono and hybrid ceramic reinforcement particles on the tribological behavior of the AZ31 matrix surface composites developed by friction stir processing,” Ceram. Int. 2020. vol. 46. no. 12. pp. 20345–20356. doi: 10.1016/j.ceramint.2020.05.123.

T. Opel., N. Langhof., W. Krenkel.“Development and tribological studies of a novel metal‐ceramic hybrid brake disc,” Int. J. Appl. Ceram. Technol. 2022. vol. 19. no. 1. pp. 62–74. doi: 10.1111/ijac.13826.

Z. Y. Fan et al. “Effect of Surface Modification on the Tribological Properties of Friction Blocks in High-Speed Train Brake Systems,” Tribol. Lett. 2021. vol. 69. no. 1, p. 27. doi: 10.1007/s11249-021-01402-4.

B. Su, H. G. Yan., J. H. Chen., P. L. Zeng., G. Chen., C. C. Chen. “Wear and Friction Behavior of the Spray-Deposited SiCp/Al-20Si-3Cu Functionally Graded Material,” J. Mater. Eng. Perform. 2013. vol. 22. no. 5. pp. 1355–1364. doi: 10.1007/s11665-012-0409-7.

V. Singhal., O. P. Pandey. “Wear and Friction Behavior of Gr/Sn Solid Lubricated Dual Reinforced AMCs,” Silicon. 2022. vol. 14. no. 10. pp. 5629–5645. doi: 10.1007/s12633-021-01343-6.

N. Raj., N. Radhika. “Tribological Characteristics of LM13/Si3N4/Gr Hybrid Composite at Elevated Temperature,” Silicon. 2019. vol. 11, no. 2, pp. 947–960. doi: 10.1007/s12633-018-9893-1.

S. H. Omran., M. M. Al-Masoudy., O. H. Hassoon., M. A. Fayad. “Optimization of mechanical wear resistance for recycled (Al-Mg-Si) reinforced SiC composite material using PM method,” Curved Layer. Struct. 2022. vol. 9, no. 1. pp. 295–303. doi: 10.1515/cls-2022-0023.

A. Du et al. “The Influence of Ce, La, and SiC Particles Addition on the Formability of an Al-Si-Cu-Mg-Fe SiCp-MMC,” Materials. 2022. vol. 15. no. 11. p. 3789. doi: 10.3390/ma15113789.

Z. Wang et al. “Aging Behavior of Nano-SiC/2014Al Composite Fabricated by Powder Metallurgy and Hot Extrusion Techniques,” J. Mater. Sci. Technol. 2016. vol. 32. no. 10. pp. 1008–1012. doi: 10.1016/j.jmst.2016.07.011.

B. Lei., M. Yi., H. Xu., L. Ran., Y. Ge., K. Peng. “Effect of Resin-Derived Carbon on the Friction Behavior of Carbon/Carbon Composites,” Tribol. Lett. 2011. vol. 41. no. 2. pp. 371–378. doi: 10.1007/s11249-010-9723-0.

S. Liu., C. Martin., D. Lashmore., M. Schauer., C. Livermore. “Carbon nanotube torsional springs for regenerative braking systems,” J. Micromechanics Microengineering. 2015. vol. 25. no. 10. p. 104005. doi: 10.1088/0960-1317/25/10/104005.

F. Talati., S. Jalalifar. “Investigation of Heat Transfer Phenomena in a Ventilated Disk Brake Rotor with Straight Radial Rounded Vanes,” J. Appl. Sci. 2008. vol. 8. no. 20. pp. 3583–3592. doi: 10.3923/jas.2008.3583.3592.

A. A. Araújo Filho., A. Yu. Petrov. “Higher-derivative Lorentz-breaking dispersion relations: a thermal description,” Eur. Phys. J. C. 2021. vol. 81. no. 9. p. 843. doi: 10.1140/epjc/s10052-021-09639-y.

H. Tian et al. “Significant improvement of thermal and tribological performance with polyimide as the matrix of paper‐based friction materials,” Polym. Compos. 2022. vol. 43. no. 4. pp. 2303–2317. doi: 10.1002/pc.26541.

G. Sayeed Ahmed., S. Algarni. “Design, Development and FE Thermal Analysis of a Radially Grooved Brake Disc Developed through Direct Metal Laser Sintering,” Materials. 2018. vol. 11. no. 7. p. 1211, Jul. doi: 10.3390/ma11071211.

X. Liu et al.,“3D Hydrogel Evaporator with Vertical Radiant Vessels Breaking the Trade‐Off between Thermal Localization and Salt Resistance for Solar Desalination of High‐Salinity,” Adv. Mater. 2022. vol. 34. no. 36. p. 2203137. doi: 10.1002/adma.202203137.

S. Polenz et al. “Development of a System for Additive Manufacturing of Ceramic Matrix Composite Structures Using Laser Technology,” Materials. 2021. vol. 14. no. 12. p. 3248. doi: 10.3390/ma14123248.

R. Gupta., S. Sharma., T. Nanda., O. P. Pandey. “Wear studies of hybrid AMCs reinforced with naturally occurring sillimanite and rutile ceramic particles for brake-rotor applications,” Ceram. Int. 2020. vol. 46. no. 10. pp. 16849–16859. doi: 10.1016/j.ceramint.2020.03.262.

P. Samal., P. R. Vundavilli., A. Meher., M. M. Mahapatra. “Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties,” J. Manuf. Process. 2020. vol. 59. pp. 131–152. doi: 10.1016/j.jmapro.2020.09.010.

V. Saravanan., P. R. Thyla., S. R. Balakrishnan. “A low cost, light weight cenosphere–aluminium composite for brake disc application,” Bull. Mater. Sci. 2016. vol. 39. no. 1. pp. 299–305. doi: 10.1007/s12034-015-1134-2.

A. A. Adebisi., Md. A. Maleque., Q. H. Shah.“Performance assessment of aluminium composite material for automotive brake rotor,” Int. J. Veh. Syst. Model. Test. 2014. vol. 9. no. 3/4. p. 207. doi: 10.1504/IJVSMT.2014.066501.

A. Jayaraj., Ch. V. K. N. S. N. Moorthy., V. S. N. Venkataramana., S. Jaikumar., V. Srinivas. “Corrosion, mechanical and thermal properties of aluminium alloy metal matrix nano composites (AA-MMNCs) with multi-walled carbon nanotubes,” SN Appl. Sci. 2020. vol. 2. no. 7. p. 1259. doi: 10.1007/s42452-020-3081-9.

F. M. Firouz., E. Mohamed., A. Lotfy., A. Daoud., M. T. Abou El-Khair, “Thermal expansion and fatigue properties of automotive brake rotor made of AlSi–SiC composites,” Mater. Res. Express. 2020. vol. 6. no. 12. p. 1265d2. doi: 10.1088/2053-1591/ab6129.

S. Sharma., T. Nanda., O. P. Pandey. “Heat treatment T4 and T6 effects on the tribological properties of sillimanite mineral-reinforced LM30 aluminium alloy composites at elevated temperatures,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2022. vol. 236. no. 5. pp. 946–959. doi: 10.1177/13506501211036543.

A. A. Alnaqi., S. Kosarieh., D. C. Barton., P. C. Brooks., S. Shrestha. “Material characterisation of lightweight disc brake rotors,” Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl. 2018. vol. 232. no. 7. pp. 555–565. doi: 10.1177/1464420716638683.

F. Ahmad., S. H. J. Lo., M. Aslam., A. Haziq. “Tribology Behaviour of Alumina Particles Reinforced Aluminium Matrix Composites and Brake Disc Materials,” Procedia Eng. 2013. vol. 68. pp. 674–680. doi: 10.1016/j.proeng.2013.12.238.

A. Daoud., M. T. Abou El-khair. “Wear and friction behavior of sand cast brake rotor made of A359-20vol% SiC particle composites sliding against automobile friction material,” Tribol. Int. 2010. vol. 43. no. 3. pp. 544–553. doi: 10.1016/j.triboint.2009.09.003.

D. Tan et al. “Evaluation of the wear resistance of aluminium-based hybrid composite brake discs under relevant city rail environments,” Mater. Des. 2022. vol. 215. p. 110504. doi: 10.1016/j.matdes.2022.110504.

L. Jiang et al. “Fabrication, microstructure, friction and wear properties of SiC3D/Al brake disc−graphite/SiC pad tribo-couple for high-speed train,” Trans. Nonferrous Met. Soc. China. 2019. vol. 29. no. 9. pp. 1889–1902. doi: 10.1016/S1003-6326(19)65097-1.

S. Panchenko., J. Gerlici., G. Vatulia., A. Lovska., V. Ravlyuk., J. Harusinec. “Studying the load of composite brake pads under high-temperature impact from the rolling surface of wheels,” EUREKA Phys. Eng. 2023. no. 4. pp. 155–167. doi: 10.21303/2461-4262.2023.002994.

H. Nakanishi. “Development of aluminum metal matrix composites (Al-MMC) brake rotor and pad,” JSAE Rev. 2002. vol. 23. no. 3. pp. 365–370. doi: 10.1016/S0389-4304(02)00203-5.

N. Kalel., B. Bhatt., A. Darpe., J. Bijwe. “Role of binder in controlling the noise and vibration performance of brake-pads,” Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2023. vol. 237. no. 13. pp. 3200–3213. doi: 10.1177/09544070221123729.

Z. Guo., J. Zuo., J. Ding., X. Wang. “Friction Coefficient Characteristics of Typical Subway Brake Shoes and Brake Pads in Service,” J. Phys. Conf. Ser. 2023. vol. 2542. no. 1. p. 012007. doi: 10.1088/1742-6596/2542/1/012007.

H. Yavuz. “An Experimental Case Study on The Comparison of The Use of Micronized Quartz and Alumina in Brake Pads,” Türk Doğa Ve Fen Derg. 2023. vol. 12. no. 3. pp. 9–14. doi: 10.46810/tdfd.1291333.

S. Y. Zhang., S. G. Qu., Y. Y. Li., W. P. Chen. “Two-body abrasive behavior of brake pad dry sliding against interpenetrating network ceramics/Al-alloy composites,” Wear. 2010. vol. 268. no. 7–8. pp. 939–945. doi: 10.1016/j.wear.2009.12.004.

S. Wang, Z. Yu, J. Wang, and S. Chen, “Research on CNN-LSTM Brake Pad Wear Condition Monitoring Based on GTO Multi-Objective Optimization,” Actuators. 2023. vol. 12. no. 7. p. 301. doi: 10.3390/act12070301.

A. A. Agbeleye., D. E. Esezobor., S. A. Balogun., J. O. Agunsoye., J. Solis., A. Neville. “Tribological properties of aluminium-clay composites for brake disc rotor applications,” J. King Saud Univ. - Sci. 2020. vol. 32. no. 1. pp. 21–28. doi: 10.1016/j.jksus.2017.09.002.

O. Kliuiev., V. Makarenko., Y. Mieshkov., O. Voitovych. “Experimental studies of truck transport brake pads materials friction properties,” Collect. Sci. Works State Univ. Infrastruct. Technol. Ser. Transp. Syst. Technol. 2023. no. 41. pp. 35–44. doi: 10.32703/2617-9059-2023-41-3.

W. Österle and I. Urban, “Friction layers and friction films on PMC brake pads,” Wear. 2004. vol. 257. no. 1–2. pp. 215–226. doi: 10.1016/j.wear.2003.12.017.

S. Venugopal, L. Karikalan., R. Kumar. “Experimental Investigations on the Effect of Reinforcement Coating on Magnesium Composites for Automotive Brake Pad,” Adv. Mater. Sci. Eng. 2022. vol. 2022. pp. 1–9. doi: 10.1155/2022/7604681.

B. I. Darmawan., K. Iwan. “ANALISIS LAJU KEAUSAN BRAKE PAD TERHADAP DISC BRAKE KERETA LISTRIK LRV SERI 1100,” J. Konversi Energi Dan Manufaktur. 2023. vol. 8. no. 2. doi: 10.21009/JKEM.8.2.4.

F. Karaca., E. Unal., I. Can. “Investigation of braking performance and thermal effect of sintering of brake pads with Al2O3 additive,” Therm. Sci. 2022. vol. 26. no. Spec. issue 1. pp. 67–73. doi: 10.2298/TSCI22S1067K.

P. Biswas., M. K. Mondal. “Evaluation of a Cast Al-Mg2Si Composite for Automobile Disk-Brake Rotor Application,” J. Mater. Eng. Perform., Oct. 2023, doi: 10.1007/s11665-023-08760-1.

X. Zhang et al., “Tribological Properties of Laminate Composite Brake Material for High-Speed Trains,” Tribol. Trans. 2022. vol. 65. no. 4. pp. 579–591. doi: 10.1080/10402004.2022.2057376.

F. Synák., L. Jakubovičová., M. Klačko. “Impact of the Choice of Available Brake Discs and Brake Pads at Different Prices on Selected Vehicle Features,” Appl. Sci. 2022. vol. 12. no. 14. p. 7325. doi: 10.3390/app12147325.

S. Kerrouz., T. Tamine., M. Bouchetara. “Numerical Simulation of the Elastic Behavior of the Automotive Brake Disc in Dry Sliding Contact With the Pads,” WSEAS Trans. Appl. Theor. Mech., vol. 17, pp. 215–225, Dec. 2022, doi: 10.37394/232011.2022.17.26.

A. Karnik., M. D. Gudela., A. Sawant., S. M. Auti. “Numerical Analysis of Different Design Iterations of a Brake Disk,” presented at the Automotive Technical Papers, Jan. 2021. pp. 2020-01–5215. doi: 10.4271/2020-01-5215.

M. H. Pranta., M. S. Rabbi., S. C. Banik., M. G. Hafez., Y.-M. Chu. “A computational study on structural and thermal behavior of modified disk brake rotors,” Alex. Eng. J. 2022. vol. 61. no. 3. pp. 1882–1890. doi: 10.1016/j.aej.2021.07.013.

B. Ali. “Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact:,” Int. J. Manuf. Mater. Mech. Eng. 2015. vol. 5. no. 4. pp. 32–62. doi: 10.4018/IJMMME.2015100103.

X. D. Nong., Y. L. Jiang., M. Fang., L. Yu, C. Y. Liu. “Numerical analysis of novel SiC3D/Al alloy co-continuous composites ventilated brake disc,” Int. J. Heat Mass Transf. 2017. vol. 108. pp. 1374–1382. doi: 10.1016/j.ijheatmasstransfer.2016.11.108.

P. Sivaprakasam., E. Abebe., R. Čep., M. Elangovan. “Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method,” Materials. 2022 vol. 15. no. 17. p. 6072, Sep. doi: 10.3390/ma15176072.

M. Nouby., K. Srinivasan. “Simulation of the structural modifications of a disc brake system to reduce brake squeal,” Proc. Inst. Mech. Eng. Part J. Automob. Eng. 2011. vol. 225. no. 5. pp. 653–672. doi: 10.1177/2041299110394515.

Downloads

Published

2024-06-15

Issue

Section

Mechanical processing of materials, the theory of cutting materials, mathematical and computer simulation of machining p