PROGRESS AND CHALLENGES IN PLUNGE MILLING: A REVIEW OF CURRENT PRACTICES AND FUTURE DIRECTIONS

Authors

DOI:

https://doi.org/10.20998/2078-7405.2024.101.05

Keywords:

Plunge milling, material removal, tool optimization, cutting tool coatings

Abstract

This review examines recent advancements and ongoing challenges in plunge milling. It is an increasingly utilised machining process renowned for its high material removal rates, particularly with hard-to-machine materials like hardened steels and titanium alloys. Plunge milling’s unique perpendicular tool path offers enhanced stability and reduced lateral cutting forces, making it valuable for applications that demand precision and efficiency, such as aerospace and automotive manufacturing. The paper systematically analyses and synthesises research on critical areas of plunge milling optimization, including tool geometry, material selection, coating technologies, and process parameters, highlighting strategies to mitigate common issues like rapid tool wear and chip evacuation difficulties. In this comprehensive overview, the review introduces theoretical and experimental findings on optimizing plunge milling tools and process parameters—such as cutting speed, feed rate, and coolant delivery—that are essential for improving performance and achieving desirable surface finishes. The paper also explores innovative trends, including AI-driven optimization algorithms and hybrid machining systems, which hold promise for addressing persistent limitations and enhancing plunge milling’s industrial applicability. By consolidating findings from recent studies, this review contributes to a deeper understanding of plunge milling’s role in high-precision manufacturing and identifies future research directions for advancing the process. The insights presented offer practical and strategic implications, aiming to guide ongoing developments in plunge milling technology and its adoption across various precision-oriented industries.

Author Biographies

Khattab Afraa, University of Miskolc, Hungary

PhD student, Faculty of Mechanical Engineering and Informatics, Institute of Manufacturing Science, University of Miskolc. Miskolc, Hungary. Research area: Additive processing.

Felhő Csaba , University of Miskolc, Hungary

PhD, Associate Professor, Director of the Institute of Production Science, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary. He graduated from the Faculty of Mechanical Engineering, University of Miskolc, Faculty of Computer Engineering in 2001. Since 2002 he has been a departmental engineer at the Department of Mechanical Engineering, and later a teacher of engineering. Since 2005 assistant professor. In 2014, he defended his Dr.-Ing. thesis "Investigation of surface roughness in machining by single and multi point tools" with magna cum laude at the Otto-von-Guericke University in Magdeburg, which was honoured with a PhD degree at the Sályi István Doctoral School of Mechanical Engineering in 2015. His fields of expertise are surface roughness analysis on machined surfaces, CAD/CAM systems.

References

W. Grzesik, Advanced machining processes of metallic materials: theory, modelling and applications, 2nd edition. Amsterdam Boston: Elsevier, 2017.

S. Tichkiewitch, M. Tollenaere, and P. Ray, Eds., Advances in Integrated Design and Manufacturing in Mechanical Engineering II. Dordrecht: Springer Netherlands, 2007. doi: 10.1007/978-1-4020-6761-7.

G. Madhavulu, S. V. N. A. Sundar, and B. Ahmed, ‘CAD/CAM solutions for efficient machining of turbo machinery components by Sturz milling method’, in Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan: IEEE,1996, pp. 1490–1495. doi: 10.1109/IECON.1996.570604.

L. Dong and M. Chen, ‘A comparative experimental study on the rough machining methods of centrifugal three-dimensional impellers’, Adv. Mech. Eng., vol. 16, no. 4, Apr. 2024, doi: 10.1177/16878132241244923.

M. Bey, H. Bendifallah, Z. Tchantchane, A. Driouech, and D. L. Cherif, ‘3-Axis Roughing of Complex Parts Using Plunge Milling Strategy’.

J. Li, W. Yu, Q. An, and M. Chen, ‘A modelling and prediction method for plunge cutting force considering the small displacement of cutting layer’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 234, no. 11, pp. 1369–1378, Sep. 2020, doi: 10.1177/0954405420921739.

F. J. G. Silva et al., ‘A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration’, J. Manuf. Mater. Process., vol. 8, no. 3, p. 115, May 2024, doi: 10.3390/jmmp8030115.

M. Grabowski, J. Gawlik, J. Krajewska-Śpiewak, S. Skoczypiec, and P. Tyczyński, ‘Technological Possibilities of the Carbide Tools Application for Precision Machining of WCLV Hardened Steel’, Adv. Sci. Technol. Res. J., vol. 16, no. 1, pp. 141–148, Jan. 2022, doi: 10.12913/22998624/144340.

S. H. Ryu, D. K. Choi, and C. N. Chu, ‘Roughness and texture generation on end milled surfaces’, Int. J. Mach. Tools Manuf., vol. 46, no. 3–4, pp. 404–412, Mar. 2006, doi:10.1016/j.ijmachtools. 2005.05.010.

T. L. Schmitz and K. S. Smith, Machining Dynamics: Frequency Response to Improved Productivity. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-319-93707-6.

N. Yuvaraj, R. Arshath Raja, P. Palanivel, and N. V. Kousik, ‘EDM Process by Using Copper Electrode with INCONEL 625 Material’, IOP Conf. Ser. Mater. Sci. Eng., vol. 811, no. 1, p. 012011, Apr. 2020, doi: 10.1088/1757-899X/811/1/012011.

A. A. Latif, M. R. Ibrahim, A. Z. Amran, and E. A. Rahim, ‘A study on the effect of feed rate and cutting speed on surface roughness and material removal rate of mild steel’, IOP Conf. Ser. Mater. Sci. Eng., vol. 257, p. 012025, Oct. 2017, doi: 10.1088/1757-899X/257/1/012025.

Y. Altintas and J. H. Ko, ‘Chatter Stability of Plunge Milling’, CIRP Ann., vol. 55, no. 1, pp. 361–364, 2006, doi: 10.1016/s0007-8506(07)60435-1.

Y. Altintas and M. Weck, ‘Chatter Stability of Metal Cutting and Grinding’, CIRP Ann., vol. 53, no. 2, pp. 619–642, 2004, doi: 10.1016/s0007-8506(07)60032-8.

S. Liu, J. Xiao, Y. Tian, S. Ma, H. Liu, and T. Huang, ‘Chatter-free and high-quality end milling for thin-walled workpieces through a follow-up support technology’, J. Mater. Process. Technol., vol. 312, p. 117857, Mar. 2023, doi: 10.1016/j.jmatprotec.2023.117857.

Y. Ding, R. Dwivedi, and R. Kovacevic, ‘Process planning for 8-axis robotized laser-based direct metal deposition system: A case on building revolved part’, Robot. Comput.-Integr. Manuf., vol. 44, pp. 67–76, Apr. 2017, doi: 10.1016/j.rcim.2016.08.008.

G. T. Smith, CNC Machining Technology. London: Springer London, 1993. doi: 10.1007/978-1-4471-2053-7.

D. Baffari, G. Buffa, D. Campanella, L. Fratini, and A. P. Reynolds, ‘Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation’, J. Manuf. Process., vol. 29, pp. 41–49, Oct. 2017, doi: 10.1016/j.jmapro.2017.07.010.

J. A. García-Barbosa, J. M. Arroyo-Osorio, and E. Córdoba-Nieto, ‘Influence of tool inclination on chip formation process and roughness response in ball-end milling of freeform surfaces on Ti-6Al-4V alloy’, Mach. Sci. Technol., vol. 21, no. 1, pp. 121–135, Jan. 2017, doi: 10.1080/10910344.2016.1260434.

M. Guo, Z. Wei, Z. Zhang, M. Wang, and D. Zhai, ‘Study on wavy-edge plunge milling cutter with chip split and cutting load reduction function’, J. Manuf. Process., vol. 102, pp. 1059–1068, Sep. 2023, doi: 10.1016/j.jmapro.2023.08.020.

Y. Cheng, J. Yang, D. Zuo, X. Song, and X. Feng, ‘Tool design and cutting parameters Optimization for plunge milling blisk’, Int. J. Manuf. Res., vol. 15, no. 3, p. 266, 2020, doi: 10.1504/ijmr.2020.108192.

C. Sun, Y. Wang, and N. Huang, ‘A new plunge milling tool path generation method for radial depth control using medial axis transform’, Int. J. Adv. Manuf. Technol., vol. 76, no. 9–12, pp. 1575–1582, Feb. 2015, doi: 10.1007/s00170-014-6375-5.

H. Chen, Z. Chen, and L. Li, ‘Wear and Life of K40 Carbide Tool for Plunge Milling GH4169’, J. Phys. Conf. Ser., vol. 2566, no. 1, p. 012058, Aug. 2023, doi: 10.1088/1742-6596/2566/1/012058.

G. F. Barbosa and J. O. Savazzi, ‘Influency of cutting tool’s angle on milling of composite materials performed by robots’, Braz. J. Oper. Prod. Manag., vol. 13, no. 2, p. 226, Jun. 2016, doi: 10.14488/bjopm.2016.v13.n2.a9.

M. Fujiki, J. Ni, and A. J. Shih, ‘Tool Path Planning for Near-Dry EDM Milling With Lead Angle on Curved Surfaces’, J. Manuf. Sci. Eng., vol. 133, no. 5, Oct. 2011, doi: 10.1115/1.4004865.

M. Al-Ahmad, A. d’Acunto, and P. Martin, ‘Identification of Plunge Milling Parameters to Compare with Conventional Milling’, in Advances in Integrated Design and Manufacturing in Mechanical Engineering II, S. Tichkiewitch, M. Tollenaere, and P. Ray, Eds., Dordrecht: Springer Netherlands, 2007, pp. 461–474. doi: 10.1007/978-1-4020-6761-7_31.

M. Reznicek and C. Horava, ‘The Influence of the Choice of Machining Strategy on Production Technology’, Manuf. Technol., vol. 24, no. 1, pp. 117–130, Feb. 2024, doi: 10.21062/mft.2024.014.

H. Xin, Y. Shi, and T. Zhao, ‘Compound efficient and powerful milling machine tool of blisk’, Int. J. Adv. Manuf. Technol., vol. 98, no. 5–8, pp. 1745–1753, Sep. 2018, doi: 10.1007/s00170-018-2225-1.

S. Cafieri, F. Monies, M. Mongeau, and C. Bes, ‘Plunge milling time optimization via mixed-integer nonlinear programming’, Comput. Ind. Eng., vol. 98, pp. 434–445, Aug. 2016, doi: 10.1016/j.cie.2016.06.015.

J. Dong, Z. Chang, Y. Chang, Z. C. Chen, and N. Wan, ‘A novel approach to modeling of multi-axis plunge milling and its application on the simulation of complex part plunging’, Int. J. Adv. Manuf. Technol., vol. 102, no. 5–8, pp. 1141–1151, Jun. 2019, doi: 10.1007/s00170-018-2952-3.

M. A. Omari, M. M. Rababah, and M. M. AlFakeh, ‘A novel approach for plunging using plungers of predefined geometry’, Int. J. Interact. Des. Manuf. IJIDeM, Sep. 2024, doi: 10.1007/s12008-024-02079-4.

J. Fu, S. B. Joshi, and J. M. Catchmark, ‘Sputtering rate of micromilling on water ice with focused ion beam in a cryogenic environment’, J. Vac. Sci. Technol. Vac. Surf. Films, vol. 26, no. 3, pp. 422–429, May 2008, doi: 10.1116/1.2902962.

M. Yeakub, R. Mehfuz, A. Ali, and A. Faris, ‘Micro Eletro Discharge Milling for Microfabrication’, in Micromachining Techniques for Fabrication of Micro and Nano Structures, M. Kahrizi, Ed., InTech, 2012. doi: 10.5772/38721.

L. Roucoules, Advances on Mechanics, Design Engineering and Manufacturing III: Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing, JCM 2020, June 2-4, 2020. in Lecture Notes in Mechanical Engineering. Erscheinungsort nicht ermittelbar: Springer Nature, 2021.

P. Das, P. Bandyopadhyay, and S. Paul, ‘Finish form grinding of thermally sprayed nano-structured coatings’, Adv. Mater. Process. Technol., vol. 5, no. 1, pp. 39–52, Jan. 2019, doi: 10.1080/2374068x.2018.1510680.

M. Rettig et al., ‘Carbidic Brake Rotor Surface Coating Applied by High-performance-laser Cladding’, in EuroBrake 2020 Technical Programme, FISITA, 2020. doi: 10.46720/eb2020-mds-025.

P. J. Blau, B. C. Jolly, J. Qu, W. H. Peter, and C. A. Blue, ‘Tribological investigation of titanium-based materials for brakes’, Wear, vol. 263, no. 7–12, pp. 1202–1211, Sep. 2007, doi: 10.1016/j.wear.2006.12.015.

J. Qu, P. J. Blau, and B. C. Jolly, ‘Oxygen-diffused titanium as a candidate brake rotor material’, Wear, vol. 267, no. 5–8, pp. 818–822, Jun. 2009, doi: 10.1016/j.wear.2008.12.044.

P. Sivaprakasam, E. Abebe, R. Čep, and M. Elangovan, ‘Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method’, Materials, vol. 15, no. 17, p. 6072, Sep. 2022, doi: 10.3390/ma15176072.

W. C. Sweatt, D. D. Gill, D. P. Adams, M. J. Vasile, and A. A. Claudet, ‘Diamond milling of micro-optics’, IEEE Aerosp. Electron. Syst. Mag., vol. 23, no. 1, pp. 13–17, Jan. 2008, doi: 10.1109/aes-m.2008.4444483.

I. Zagorski, ‘Cutting force components in rough milling of magnesium alloys with a TiAlN-coated carbide tool’, in 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy: IEEE, Jun. 2022, pp. 64–69. doi: 10.1109/MetroAeroSpace54187.2022.9856171.

F. Monies, I. Danis, C. Bes, S. Cafieri, and M. Mongeau, ‘A new machining strategy for roughing deep pockets of magnesium-rare earth alloys’, Int. J. Adv. Manuf. Technol., vol. 92, no. 9–12, pp. 3883–3901, Oct. 2017, doi: 10.1007/s00170-017-0444-5.

Y. S. Zhai, H. L. Song, and J. S. Hu, ‘Study on Plunge Milling Cutter Design with Finite Element Analysis’, Mater. Sci. Forum, vol. 836–837, pp. 425–429, Jan. 2016, doi: 10.4028/www.scientific.net/MSF.836-837.425.

S. Wakaoka, Y. Yamane, K. Sekiya, and N. Narutaki, ‘High-speed and high-accuracy plunge cutting for vertical walls’, J. Mater. Process. Technol., vol. 127, no. 2, pp. 246–250, Sep. 2002, doi: 10.1016/s0924-0136(02)00151-6.

Y. Liang, D. Zhang, J. Ren, and Y. Xu, ‘Feedrate scheduling for multi-axis plunge milling of open blisks’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 9, pp. 1525–1534, Sep. 2015, doi: 10.1177/0954405414555741.

C. R. J. Herbert, J. Kwong, M. C. Kong, D. A. Axinte, M. C. Hardy, and P. J. Withers, ‘An evaluation of the evolution of workpiece surface integrity in hole making operations for a nickel-based superalloy’, J. Mater. Process. Technol., vol. 212, no. 8, pp. 1723–1730, Aug. 2012, doi: 10.1016/j.jmatprotec.2012.03.014.

A. Damir, ‘Modelling the dynamics of plunge milling with workpiece vibrations consideration’.

G. J. Deng, S. L. Soo, R. Hood, K. Marshall, A. L. Mantle, and D. Novovic, ‘Assessment of workpiece surface integrity and dimensional/geometrical accuracy following finish plunge end milling of holes drilled with worn tools in PM-processed nickel based superalloy’, Procedia CIRP, vol. 123, pp. 398–403, 2024, doi: 10.1016/j.procir.2024.05.070.

E. Y. T. Adesta, Avicenna, I. Hilmy, and M. R. H. C. Daud, ‘Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel’, IOP Conf. Ser. Mater. Sci. Eng., vol. 290, p. 012040, Jan. 2018, doi: 10.1088/1757-899X/290/1/012040.

A. S. Awale, A. Chaudhari, A. Kumar, M. Z. Khan Yusufzai, and M. Vashista, ‘Synergistic impact of eco-friendly nano-lubricants on the grindability of AISI H13 tool steel: A study towards clean manufacturing’, J. Clean. Prod., vol. 364, p. 132686, Sep. 2022, doi: 10.1016/j.jclepro.2022.132686.

T. Huang, X.-M. Zhang, J. Leopold, and H. Ding, ‘Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach’, J. Manuf. Sci. Eng., vol. 140, no. 11, p. 111002, Nov. 2018, doi: 10.1115/1.4040872.

R. S. Altıntaş, M. Kahya, and H. Ö. Ünver, ‘Modelling and optimization of energy consumption for feature based milling’, Int. J. Adv. Manuf. Technol., vol. 86, no. 9–12, pp. 3345–3363, Oct. 2016, doi: 10.1007/s00170-016-8441-7.

L. Dong and J. Wang, ‘A study of interferential tool position correcting algorithms in 3D impeller variable-axis rough plunge milling’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 237, no. 1–2, pp. 122–133, Jan. 2023, doi: 10.1177/09544054221098609.

M. Bey, Z. Tchantchane, L. Kheidri, and N. Benhenda, ‘Toward the automation of the plunge milling strategy for roughing sculptured surfaces from stl models’. 15th International Research/Expert Conference ”Trends in the Development of Machinery and Associated Technology”, TMT 2011, 12-18 September 2011/Prague, Czech Republic/ рр. 97‒100.

F. Y. Han, D. H. Zhang, M. Luo, and B. H. Wu, ‘Optimal CNC plunge cutter selection and tool path generation for multi-axis roughing free-form surface impeller channel’, Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1801–1810, Apr. 2014, doi: 10.1007/s00170-014-5608-y.

S. Perumalsamy and V. Kaliyamurthy, ‘Leveraging Blockchain with Optimal Deep Learning-Based Drug Supply Chain Management for Pharmaceutical Industries’, Comput. Mater. Contin., vol. 77, no. 2, pp. 2341–2357, 2023, doi: 10.32604/cmc.2023.040269.

K. Zhuang, X. Zhang, X. Zhang, and H. Ding, ‘Force Prediction in Plunge Milling of Inconel 718’, in Intelligent Robotics and Applications, vol. 7507, C.-Y. Su, S. Rakheja, and H. Liu, Eds., in Lecture Notes in Computer Science, vol. 7507. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 255–263. doi: 10.1007/978-3-642-33515-0_26.

H. Tawfik, ‘A New Algorithm to Calculate the Optimal Inclination Angle for Filling of Plunge-milling’. International Journal of CAD/CAM / v.6, no.1, 2006 , pp. 193-198.

H. Wang and K. Tao, ‘Study on material removal and cutting analysis in ball helical milling process’, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 24, pp. 11493–11504, Dec. 2022, doi: 10.1177/09544062221110463.

K. Zhuang, X. Zhang, D. Zhang, and H. Ding, ‘On cutting parameters selection for plunge milling of heat-resistant-super-alloys based on precise cutting geometry’, J. Mater. Process. Technol., vol. 213, no. 8, pp. 1378–1386, Aug. 2013, doi: 10.1016/j.jmatprotec.2013.03.007.

V.-H. Bui, P. Gilles, G. Cohen, and W. Rubio, ‘Develop Model for Controlled Depth Milling by Abrasive Water Jet of Ti6Al4V at Jet Inclination Angle’, in Advances on Mechanics, Design Engineering and Manufacturing III, L. Roucoules, M. Paredes, B. Eynard, P. Morer Camo, and C. Rizzi, Eds., in Lecture Notes in Mechanical Engineering. , Cham: Springer International Publishing, 2021, pp. 21–27. doi: 10.1007/978-3-030-70566-4_5.

I. Danis, F. Monies, P. Lagarrigue, and N. Wojtowicz, ‘Cutting forces and their modelling in plunge milling of magnesium-rare earth alloys’, Int. J. Adv. Manuf. Technol., vol. 84, no. 9–12, pp. 1801–1820, Jun. 2016, doi: 10.1007/s00170-015-7826-3.

Q. Cheng et al., ‘Study on tool wear for efficient grooving blisk with disc milling cutter’, J. Mech. Sci. Technol., vol. 37, no. 10, pp. 5335–5348, Oct. 2023, doi: 10.1007/s12206-023-0935-2.

Y. Shi and G. Zheng, ‘The algorithm of layering calculation for corner plunge milling tool path’, Int. J. Adv. Manuf. Technol., vol. 91, no. 5–8, pp. 2059–2075, Jul. 2017, doi: 10.1007/s00170-016-9942-0.

R. Neugebauer, W. Drossel, R. Wertheim, C. Hochmuth, and M. Dix, ‘Resource and Energy Efficiency in Machining Using High-Performance and Hybrid Processes’, Procedia CIRP, vol. 1, pp. 3–16, 2012, doi: 10.1016/j.procir.2012.04.002.

J. X. Ren, C. F. Yao, D. H. Zhang, Y. L. Xue, and Y. S. Liang, ‘Research on tool path planning method of four-axis high-efficiency slot plunge milling for open blisk’, Int. J. Adv. Manuf. Technol., vol. 45, no. 1–2, pp. 101–109, Nov. 2009, doi: 10.1007/s00170-009-2153-1.

A. W. Hashmi, H. S. Mali, A. Meena, I. A. Khilji, M. F. Hashmi, and S. N. B. M. Saffe, ‘Artificial intelligence techniques for implementation of intelligent machining’, Mater. Today Proc., vol. 56, pp. 1947–1955, 2022, doi: 10.1016/j.matpr.2021.11.277.

X. Q. Wang, Z. C. Wei, D. Wang, D. B. Zhang, X. Y. Wang, and M. J. Wang, ‘A supplementary processing method of residual material in impeller plunge milling’, J. Manuf. Process., vol. 108, pp. 1–11, Dec. 2023, doi: 10.1016/j.jmapro.2023.10.076.

Z. C. Chen and S. Abdelkhalek, ‘A New Approach to Planning Plungers Paths for Efficient 2½-Axis Computer Numerically Controlled Plunge Milling of Complex Pockets With Islands’, J. Manuf. Sci. Eng., vol. 136, no. 4, Aug. 2014, doi: 10.1115/1.4027538.

G. Urbikain Pelayo, D. Olvera-Trejo, M. Luo, K. Tang, L. N. López De Lacalle, and A. Elías-Zuñiga, ‘A model-based sustainable productivity concept for the best decision-making in rough milling operations’, Measurement, vol. 186, p. 110120, Dec. 2021, doi: 10.1016/j.measurement.2021.110120.

Downloads

Published

2024-12-07

Issue

Section

Mechanical processing of materials, the theory of cutting materials, mathematical and computer simulation of machining p